
MSDN Home > MSDN Library > Office Solutions Development > Access 2000 > Technical Articles

Fundamental Microsoft Jet SQL for Access
2000

Acey James Bunch
Microsoft Corporation

February 2000

Applies To: Microsoft® Access 2000
Summary: This article discusses the basic mechanics of using Jet SQL to work
with data in an Access 2000 database. It also delves into using SQL to create
and alter a database's structure. If you're new to manipulating data with SQL in an Access database, this article
is a great place to start. (21 printed pages)

Download AcFundSQL.exe.

Contents
Introduction
SQL Defined
Using Data Definition Language
Using Data Manipulation Language
Using SQL in Access
One Last Comment
Additional Resources

Introduction
This is the first in a series of articles that explain what SQL is and how you can use it in your Microsoft® Access
2000 applications. There are three articles in all: a fundamental, an intermediate, and an advanced article. The
articles are designed to progressively show the syntax and methods for using SQL, and to bring out those
features of SQL that are new to Access 2000.

SQL Defined
To really gain the benefit and power of SQL, you must first come to a basic understanding of what it is and how
you can use it.

What Is Structured Query Language?
SQL stands for Structured Query Language and is sometimes pronounced as "sequel." At its simplest, it is the
language that is used to extract, manipulate, and structure data that resides in a relational database
management system (RDBMS). In other words, to get an answer from your database, you must ask the
question in SQL.

Why and Where Would You Use SQL?
You may not know it, but if you've been using Access, you've also been using SQL. "No!" you may say. "I've
never used anything called SQL." That's because Access does such a great job of using it for you. The thing to
remember is that for every data-oriented request you make, Access converts it to SQL under the covers.

SQL is used in a variety of places in Access. It is used of course for queries, but it is also used to build reports,
populate list and combo boxes, and drive data-entry forms. Because SQL is so prevalent throughout Access,
understanding it will greatly improve your ability to take control of all of the programmatic power that Access
gives you.

Note The particular dialect of SQL discussed in this article applies to version 4.0 of the Microsoft
Jet database engine. Although many of the SQL statements will work in other databases, such as
Microsoft SQL ServerÂ™, there are some differences in syntax. To identify the correct SQL
syntax, consult the documentation for the database system you are using.

Page Options
Average rating:
6 out of 9

Rate this page
Print this page
E-mail this page
Add to Favorites

Pagina 1 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

Data Definition Language
Data definition language (DDL) is the SQL language, or terminology, that is used to manage the database
objects that contain data. Database objects are tables, indexes, or relationships—anything that has to do with
the structure of the database—but not the data itself. Within SQL, certain keywords and clauses are used as the
DDL commands for a relational database.

Data Manipulation Language
Data manipulation language (DML) is the SQL language, or terminology, that is used to manage the data within
the database. DML has no effect on the structure of the database; it is only used against the actual data. DML is
used to extract, add, modify, and delete information contained in the relational database tables.

ANSI and Access 2000
ANSI stands for the American National Standards Institute, which is a nationally recognized standards-setting
organization that has defined a base standard for SQL. The most recently defined standard is SQL-92, and
Access 2000 has added many new features to conform more closely to the standard, although some of the new
features are available only when you are using the Jet OLE DB provider. However, Access has also maintained
compliance with previous versions to allow for the greatest flexibility. Access also has some extra features not
yet defined by the standard that extend the power of SQL.

To understand more about OLE DB and how it fits into the Microsoft Universal Data Access strategy, visit the
Universal Data Access Web site at http://www.microsoft.com/data/.

SQL Coding Conventions
Throughout this article, you will notice a consistent method of SQL coding conventions. As with all coding
conventions, the idea is to display the code in such a way as to make it easy to read and understand. This is
accomplished by using a mix of white space, new lines, and uppercase keywords. In general, use uppercase for
all SQL keywords, and if you must break the line of SQL code, try to do so with a major section of the SQL
statement. You'll get a better feel for it after seeing a few examples.

Poorly formatted SQL code

CREATE TABLE tblCustomers (CustomerID INTEGER NOT NULL,[Last Name] TEXT(50) NOT NULL,
[First Name] TEXT(50) NOT NULL,Phone TEXT(10),Email TEXT(50))

Well-formatted SQL code

CREATE TABLE tblCustomers
 (CustomerID INTEGER NOT NULL,
 [Last Name] TEXT(50) NOT NULL,
 [First Name] TEXT(50) NOT NULL,
 Phone TEXT(10),
 Email TEXT(50))

Using Data Definition Language
When you are manipulating the structure of a database, there are three primary objects that you will work with:
tables, indexes, and relationships.

� Tables are the database structure that contains the physical data, and they are organized by their columns
(or fields) and rows (or records).

� Indexes are the database objects that define how the data in the tables is arranged and sorted in memory.
� Relationships define how one or more tables relate to one or more other tables.

All three of these database objects form the foundation for all relational databases.

Creating and Deleting Tables
Tables are the primary building blocks of a relational database. A table contains rows (or records) of data, and
each row is organized into a finite number of columns (or fields). To build a new table in Access by using Jet
SQL, you must name the table, name the fields, and define the type of data that the fields will contain. Use the

Pagina 2 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

CREATE TABLE statement to define the table in SQL. Let's suppose that we are building an invoicing database,
so we will start with building the initial customers table.

CREATE TABLE tblCustomers
 (CustomerID INTEGER,
 [Last Name] TEXT(50),
 [First Name] TEXT(50),
 Phone TEXT(10),
 Email TEXT(50))

Notes

� If a field name includes a space or some other nonalphanumeric character, you must enclose that field
name within square brackets ([]).

� If you do not declare a length for text fields, they will default to 255 characters. For consistency and code
readability, you should always define your field lengths.

� For more information about the types of data that can be used in field definitions, type SQL data types in
the Office Assistant or on the Answer Wizard tab in the Microsoft Access Help window, and then click
Search.

You can declare a field to be NOT NULL, which means that null values cannot be inserted into that particular
field; a value is always required. A null value should not be confused with an empty string or a value of 0, it is
simply the database representation of an unknown value.

CREATE TABLE tblCustomers
 (CustomerID INTEGER NOT NULL,
 [Last Name] TEXT(50) NOT NULL,
 [First Name] TEXT(50) NOT NULL,
 Phone TEXT(10),
 Email TEXT(50))

To remove a table from the database, use the DROP TABLE statement.

DROP TABLE tblCustomers

Working with Indexes
An index is an external data structure used to sort or arrange pointers to data in a table. When you apply an
index to a table, you are specifying a certain arrangement of the data so that it can be accessed more quickly.
However, if you apply too many indexes to a table, you may slow down the performance because there is extra
overhead involved in maintaining the index, and because an index can cause locking issues when used in a
multiuser environment. Used in the correct context, an index can greatly improve the performance of an
application.

To build an index on a table, you must name the index, name the table to build the index on, name the field or
fields within the table to use, and name the options you want to use. You use the CREATE INDEX statement to
build the index. For example, here's how you would build an index on the customers table in the invoicing
database mentioned earlier.

CREATE INDEX idxCustomerID
 ON tblCustomers (CustomerID)

Indexed fields can be sorted in one of two ways: ascending (ASC) or descending (DESC). The default order is
ascending, and it does not have to be declared. If you use ascending order, the data will be sorted from 1 to
100. If you specify descending order, the data will be sorted from 100 to 1. You should declare the sort order
with each field in the index.

CREATE INDEX idxCustomerID
 ON tblCustomers (CustomerID DESC)

There are four main options that you can use with an index: PRIMARY, DISALLOW NULL, IGNORE NULL, and

Pagina 3 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

UNIQUE. The PRIMARY option designates the index as the primary key for the table. You can have only one
primary key index per table, although the primary key index can be declared with more than one field. Use the
WITH keyword to declare the index options.

CREATE INDEX idxCustomerID
 ON tblCustomers (CustomerID)
 WITH PRIMARY

To create a primary key index on more than one field, include all of the field names in the field list.

CREATE INDEX idxCustomerName
 ON tblCustomers ([Last Name], [First Name])
 WITH PRIMARY

The DISALLOW NULL option prevents insertion of null data in the field. (This is similar to the NOT NULL
declaration used in the CREATE TABLE statement.)

CREATE INDEX idxCustomerEmail
 ON tblCustomers (Email)
 WITH DISALLOW NULL

The IGNORE NULL option causes null data in the table to be ignored for the index. That means that any record
that has a null value in the declared field will not be used (or counted) in the index.

CREATE INDEX idxCustomerLastName
 ON tblCustomers ([Last Name])
 WITH IGNORE NULL

In addition to the PRIMARY, DISALLOW NULL, and IGNORE NULL options, you can also declare the index as
UNIQUE, which means that only unique, non-repeating values can be inserted in the indexed field.

CREATE UNIQUE INDEX idxCustomerPhone
 ON tblCustomers (Phone)

To remove an index from a table, use the DROP INDEX statement.

DROP INDEX idxName
 ON tblCustomers

Defining Relationships Between Tables
Relationships are the established associations between two or more tables. Relationships are based on common
fields from more than one table, often involving primary and foreign keys.
A primary key is the field (or fields) that is used to uniquely identify each record in a table. There are three
requirements for a primary key: It cannot be null, it must be unique, and there can be only one defined per
table. You can define a primary key either by creating a primary key index after the table is created, or by using
the CONSTRAINT clause in the table declaration, as shown in the examples later in this section. A constraint
limits (or constrains) the values that are entered in a field. For more information about constraints, see the
article "Intermediate Microsoft Jet SQL for Access 2000."

A foreign key is a field (or fields) in one table that references the primary key in another table. The data in the
fields from both tables is exactly the same, and the table with the primary key record (the primary table) must
have existing records before the table with the foreign key record (the foreign table) has the matching or
related records. Like primary keys, you can define foreign keys in the table declaration by using the
CONSTRAINT clause.

There are essentially three types of relationships:
� One-to-one For every record in the primary table, there is one and only one record in the foreign table.
� One-to-many For every record in the primary table, there are one or more related records in the

foreign table.

Pagina 4 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

� Many-to-many For every record in the primary table, there are many related records in the foreign
table, and for every record in the foreign table, there are many related records in the primary table.

For example, let's add an invoices table to our invoicing database. Every customer in our customers table can
have many invoices in our invoices table—this is a classic one-to-many scenario. We will take the primary key
from the customers table and define it as the foreign key in our invoices table, thereby establishing the proper
relationship between the tables.

When defining the relationships between tables, you must make the CONSTRAINT declarations at the field level.
This means that the constraints are defined within a CREATE TABLE statement. To apply the constraints, use the
CONSTRAINT keyword after a field declaration, name the constraint, name the table that it references, and
name the field or fields within that table that will make up the matching foreign key.

The following statement assumes that the tblCustomers table has already been built, and that it has a primary
key defined on the CustomerID field. The statement now builds the tblInvoices table, defining its primary key on
the InvoiceID field. It also builds the one-to-many relationship between the tblCustomers and tblInvoices tables
by defining another CustomerID field in the tblInvoices table. This field is defined as a foreign key that
references the CustomerID field in the Customers table. Note that the name of each constraint follows the
CONSTRAINT keyword.

CREATE TABLE tblInvoices
 (InvoiceID INTEGER CONSTRAINT PK_InvoiceID PRIMARY KEY,
 CustomerID INTEGER NOT NULL CONSTRAINT FK_CustomerID
 REFERENCES tblCustomers (CustomerID),
 InvoiceDate DATETIME,
 Amount CURRENCY)

Note that the primary key index (PK_InvoiceID) for the invoices table is declared within the CREATE TABLE
statement. To enhance the performance of the primary key, an index is automatically created for it, so there's
no need to use a separate CREATE INDEX statement.

Now let's create a shipping table that will contain each customer's shipping address. Let's assume that there will
be only one shipping record for each customer record, so we will be establishing a one-to-one relationship.

CREATE TABLE tblShipping
 (CustomerID INTEGER CONSTRAINT PK_CustomerID PRIMARY KEY
 REFERENCES tblCustomers (CustomerID),
 Address TEXT(50),
 City TEXT(50),
 State TEXT(2),
 Zip TEXT(10))

Note that the CustomerID field is both the primary key for the shipping table and the foreign key reference to
the customers table.

Note When you are creating a one-to-one relationship by using DDL statements, the Access
user interface may display the relationship as a one-to-many relationship. To correct this
problem, after the one-to-one relationship has been created, open the Relationships window by
clicking Relationships on the Tools menu. Make sure that the affected tables have been added
to the Relationships window, and then double-click the link between the tables to open the Edit
Relationships dialog box. Click the Join Type button to open the Join Properties dialog box.
You don't have to select an option, just click OK to close the dialog box, and then click OK to
close the Edit Relationships dialog box. The one-to-one relationship should now be displayed
correctly.

For more information about relationships and how they work, type relationships in the Office Assistant or on
the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Using Data Manipulation Language
DML is all about working with the data that is stored in the database tables. Not only is DML used for retrieving
the data, it is also used for creating, modifying, and deleting it.

Retrieving Records

Pagina 5 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

The most basic and most often used SQL statement is the SELECT statement. SELECT statements are the
workhorses of all SQL statements, and they are commonly referred to as select queries. You use the SELECT
statement to retrieve data from the database tables, and the results are usually returned in a set of records (or
rows) made up of any number of fields (or columns). You must designate which table or tables to select from
with the FROM clause. The basic structure of a SELECT statement is:

SELECT field list
FROM table list

To select all the fields from a table, use an asterisk (*). For example, the following statement selects all the
fields and all the records from the customers table:

SELECT *
 FROM tblCustomers

To limit the fields retrieved by the query, simply use the field names instead. For example:

SELECT [Last Name], Phone
 FROM tblCustomers

To designate a different name for a field in the result set, use the AS keyword to establish an alias for that field.

SELECT CustomerID AS [Customer Number]
 FROM tblCustomers

Restricting the Result Set
More often than not, you will not want to retrieve all records from a table. You will want only a subset of those
records based on some qualifying criteria. To qualify a SELECT statement, you must use a WHERE clause, which
will allow you to specify exactly which records you want to retrieve.

SELECT *
 FROM tblInvoices
 WHERE CustomerID = 1

Note the CustomerID = 1 portion of the WHERE clause. A WHERE clause can contain up to 40 such expressions,
and they can be joined with the And or Or logical operators. Using more than one expression allows you to
further filter out records in the result set.

SELECT *
 FROM tblInvoices
 WHERE CustomerID = 1 AND InvoiceDate > #01/01/98#

Note that the date string is enclosed in number signs (#). If you are using a regular string in an expression, you
must enclose the string in single quotation marks ('). For example:

SELECT *
 FROM tblCustomers
 WHERE [Last Name] = 'White'

If you do not know the whole string value, you can use wildcard characters with the Like operator.

SELECT *
 FROM tblCustomers
 WHERE [Last Name] LIKE 'W*'

There are a number of wildcard characters to choose from, and the following table details what they are and
what they can be used for.

Wildcard character Description
* or % Zero or more characters
? or _ (underscore) Any single character

Pagina 6 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

Note The % and _ (underscore) wildcard characters should be used only through the Jet OLE
DB provider and ActiveX® Data Objects (ADO) code. They will be treated as literal characters if
they are used though the Access SQL View user interface or Data Access Objects (DAO) code.

For more information about using the Like operator with wildcard characters, type wildcard characters in the
Office Assistant or on the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Sorting the Result Set
To specify a particular sort order on one or more fields in the result set, use the optional ORDER BY clause. As
explained earlier in the "Working with Indexes" section, records can be sorted in either ascending (ASC) or
descending (DESC) order; ascending is the default.

Fields referenced in the ORDER BY clause do not have to be part of the SELECT statement's field list, and sorting
can be applied to string, numeric, and date/time values. Always place the ORDER BY clause at the end of the
SELECT statement.

SELECT *
 FROM tblCustomers
 ORDER BY [Last Name], [First Name] DESC

You can also use the field numbers (or positions) instead of field names in the ORDER BY clause.

SELECT *
 FROM tblCustomers
 ORDER BY 2, 3 DESC

For more information about using the ORDER BY clause, type ORDER BY clause in the Office Assistant or on
the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Using Aggregate Functions to Work with Values
Aggregate functions are used to calculate statistical and summary information from data in tables. These
functions are used in SELECT statements, and all of them take fields or expressions as arguments.

To count the number of records in a result set, use the Count function. Using an asterisk with the Count
function causes Null values to be counted as well.

SELECT Count(*) AS [Number of Invoices]
 FROM tblInvoices

To count only non-Null values, use the Count function with a field name:

SELECT Count(Amount) AS
 [Number of Valid Invoice Amounts]
 FROM tblInvoices

To find the average value for a column or expression of numeric data, use the Avg function:

SELECT Avg(Amount) AS [Average Invoice Amount]
 FROM tblInvoices

To find the total of the values in a column or expression of numeric data, use the Sum function:

SELECT Sum(Amount) AS [Total Invoice Amount]
 FROM tblInvoices

To find the minimum value for a column or expression, use the Min function:

Any single digit (0-9)
[charlist] Any single character in charlist
[!charlist] Any single character not in charlist

Pagina 7 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

SELECT Min(Amount) AS [Minimum Invoice Amount]
 FROM tblInvoices

To find the maximum value for a column or expression, use the Max function:

SELECT Max(Amount) AS [Maximum Invoice Amount]
 FROM tblInvoices

To find the first value in a column or expression, use the First function:

SELECT First(Amount) AS [First Invoice Amount]
 FROM tblInvoices

To find the last value in a column or expression, use the Last function:

SELECT Last(Amount) AS [Last Invoice Amount]
 FROM tblInvoices

For more information about using the aggregate functions, type SQL aggregate functions in the Office
Assistant or on the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Grouping Records in a Result Set
Sometimes there are records in a table that are logically related, as in the case of the invoices table. Since one
customer can have many invoices, it could be useful to treat all the invoices for one customer as a group, in
order to find statistical and summary information about the group.

The key to grouping records is that one or more fields in each record must contain the same value for every
record in the group. In the case of the invoices table, the CustomerID field value is the same for every invoice a
particular customer has.
To create a group of records, use the GROUP BY clause with the name of the field or fields you want to group
with.

SELECT CustomerID, Count(*) AS [Number of Invoices],
 Avg(Amount) AS [Average Invoice Amount]
 FROM tblInvoices
 GROUP BY CustomerID

Note that the statement will return one record that shows the customer ID, the number of invoices the customer
has, and the average invoice amount, for every customer who has an invoice record in the invoices table.
Because each customer's invoices are treated as a group, we are able to count the number of invoices, and then
determine the average invoice amount.

You can specify a condition at the group level by using the HAVING clause, which is similar to the WHERE
clause. For example, the following query returns only those records for each customer whose average invoice
amount is less than 100:

SELECT CustomerID, Count(*) AS [Number of Invoices],
 Avg(Amount) AS [Average Invoice Amount]
 FROM tblInvoices
 GROUP BY CustomerID
 HAVING Avg(Amount) < 100

For more information about using the GROUP BY clause, type GROUP BY clause in the Office Assistant or on
the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Inserting Records into a Table
There are essentially two methods for adding records to a table. The first is to add one record at a time; the
second is to add many records at a time. In both cases, you use the SQL statement INSERT INTO to accomplish
the task. INSERT INTO statements are commonly referred to as append queries.

Pagina 8 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

To add one record to a table, you must use the field list to define which fields to put the data in, and then you
must supply the data itself in a value list. To define the value list, use the VALUES clause. For example, the
following statement will insert the values "1", "Kelly", and "Jill" into the CustomerID, Last Name, and First Name
fields, respectively.

INSERT INTO tblCustomers (CustomerID, [Last Name], [First Name])
 VALUES (1, 'Kelly', 'Jill')

You can omit the field list, but only if you supply all the values that record can contain.

INSERT INTO tblCustomers
 VALUES (1, Kelly, 'Jill', '555-1040', 'someone@microsoft.com')

To add many records to a table at one time, use the INSERT INTO statement along with a SELECT statement.
When you are inserting records from another table, each value being inserted must be compatible with the type
of field that will be receiving the data. For more information about data types and their usage, see
"Intermediate Microsoft Jet SQL for Access 2000."
The following INSERT INTO statement inserts all the values in the CustomerID, Last Name, and First Name
fields from the tblOldCustomers table into the corresponding fields in the tblCustomers table.

INSERT INTO tblCustomers (CustomerID, [Last Name], [First Name])
 SELECT CustomerID, [Last Name], [First Name]
 FROM tblOldCustomers

If the tables are defined exactly alike, you leave can out the field lists.

INSERT INTO tblCustomers
 SELECT * FROM tblOldCustomers

For more information about using the INSERT INTO statement, type INSERT INTO statement in the Office
Assistant or on the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Updating Records in a Table
To modify the data that is currently in a table, you use the UPDATE statement, which is commonly referred to as
an update query. The UPDATE statement can modify one or more records and generally takes this form:

UPDATE table name
SET field name = some value

To update all the records in a table, specify the table name, and then use the SET clause to specify the field or
fields to be changed.

UPDATE tblCustomers
 SET Phone = 'None'

In most cases, you will want to qualify the UPDATE statement with a WHERE clause to limit the number of
records changed.

UPDATE tblCustomers
 SET Email = 'None'
 WHERE [Last Name] = 'Smith'

For more information about using the UPDATE statement, type UPDATE statement in the Office Assistant or on
the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Deleting Records from a Table
To delete the data that is currently in a table, you use the DELETE statement, which is commonly referred to as
a delete query, also known as truncating a table. The DELETE statement can remove one or more records from
a table and generally takes this form:

Pagina 9 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Technical...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

DELETE FROM table list

The DELETE statement does not remove the table structure, only the data that is currently being held by the
table structure. To remove all the records from a table, use the DELETE statement and specify which table or
tables you want to delete all the records from.

DELETE FROM tblInvoices

In most cases, you will want to qualify the DELETE statement with a WHERE clause to limit the number of
records to be removed.

DELETE FROM tblInvoices
 WHERE InvoiceID = 3

If you want to remove data only from certain fields in a table, use the UPDATE statement and set those fields
equal to NULL, but only if they are nullable fields. For more information about nullable fields, see "Intermediate
Microsoft Jet SQL for Access 2000."

UPDATE tblCustomers
 SET Email = Null

For more information about using the DELETE statement, type DELETE statement in the Office Assistant or on
the Answer Wizard tab in the Microsoft Access Help window, and then click Search.

Using SQL in Access
Now that we've had a basic overview of the SQL syntax, let's look at some of the ways we can use it in an
Access application. To do this, we'll use the sample database included with this article. Through queries and
sample code, the acFundSQL.mdb sample demonstrates the different SQL statements discussed in this article.

Note Many of the sample queries used in acFundSQL.mdb depend on certain tables existing
and containing data. Because some of the queries in acFundSQL.mdb alter the data or the
database structure, you may eventually have difficulty running other queries due to missing or
altered data, tables, or indexes. If this problem occurs, open the frmResetTables form and click
the Reset Tables button to re-create the tables and their original default data. To manually step
through the reset-table process, execute the following queries in the order they are listed:

Drop Shipping Table
Drop Invoices Table
Drop Customers Table
Create Customers Table
Create Invoices Table
Create Shipping Table
Populate Customers
Populate Invoices
Populate Shipping

Building Queries
Queries are SQL statements that are saved in an Access database and can be used at any time, either directly
from the Access user interface or from the Visual Basic® for Applications (VBA) programming language. You can
build queries by using query Design view, which greatly simplifies the building of SQL statements, or you can
build queries by entering SQL statements directly in the SQL view window.

As mentioned at the beginning of this article, Access converts all data-oriented tasks in the database into SQL
statements. To demonstrate this behavior, let's build a query in query Design view.
1. Open the acFundSQL.mdb database.
1. Make sure that the tblCustomers table has been created and that it contains some data.
2. In the Database window, click Queries under Objects, and then click New on the Database window

toolbar.
3. In the New Query dialog box, click Design View, and then click OK.

Pagina 10 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Techni...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

4. In the Show Table dialog box, click tblCustomers, click Add, and then click Close.
5. In the tblCustomers field list, click the asterisk (*) and drag it to the first field in the query design grid.
6. On the View menu, click SQL View. This opens the SQL view window and displays the SQL syntax that

Access is using for this query.

Note This query is similar to the Select All Customers query already saved in the acFundSQL
database.

Specifying a Data Source
To make a connection to data in the database's tables, Access objects use data source properties. For example,
a form has a RecordSource property that connects it to a particular table in the database. Anywhere that a
data source is specified, you can use an SQL statement (or a saved query) instead of the name of a table. For
example, let's build a new form that connects to the customers table by using an SQL SELECT statement as the
data source.
1. Open the acFundSQL.mdb database and make sure that the tblCustomers table has been created and that

it contains some data.
2. In the Database window, click Forms under Objects, and then click New on the Database window toolbar
3. In the New Form dialog box, click Design View, and then click OK. A blank form is now open in Design

view.
4. On the View menu, click Properties to open the form's property sheet.
5. In the RecordSource property text box, type the following SQL statement:

SELECT * FROM tblCustomers

6. Press the ENTER key on your keyboard. The field list appears, and it lists all of the available fields from the
tblCustomers table.

7. Select all of the fields by holding down the SHIFT key and clicking the first and then the last field listed.
8. Drag the selected fields to the center of the Detail section on the blank form and then release the mouse

button.
9. Close the property sheet.

10. On the View menu, click Form View, and then use the record selectors at the bottom of the form to scroll
through all the records in the tblCustomers table.

Another great place to use an SQL statement is in the RowSource property for a list or combo box. Let's build
a simple form with a combo box that uses an SQL SELECT statement as its row source.
1. Open the acFundSQL.mdb database and make sure that the tblCustomers table has been created and that

it contains some data.
2. Create a new form and open it in Design view.
3. On the View menu, click Toolbox.
4. Make sure that the Control Wizards (upper rightmost) button in the toolbox is not pressed in.
5. Click the Combo Box button and then click in the center of the blank form's Detail section.
6. Make sure that the combo box in the form is selected, and then click Properties on the View menu.
7. In the RowSource property text box, type the following SQL statement:

SELECT [Last Name] FROM tblCustomers

8. Press ENTER, and then close the property sheet.
9. On the View menu, click Form View. In the form, click the down arrow next to the combo box. Note that

all the last names from the customers table are listed in the combo box.

Using SQL Statements Inline
The process of using SQL statements within VBA code is referred to as using the statements "inline." Although a
deep discussion of how to use VBA is outside the scope of this article, it is a straightforward task to execute SQL
statements in VBA code.

Pagina 11 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Techni...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

Suppose we need to run an UPDATE statement from code, and we want to run the code when a user clicks a
button on a form.
1. Open the acFundSQL.mdb database and make sure that the tblCustomers table has been created and that

it contains some data.
2. Create a new form and open it in Design view.
3. On the View menu, click Toolbox.
4. Make sure that the Control Wizards (upper rightmost) button in the toolbox is not pressed in.
5. Click the Command Button button and then click in the center of the blank form's Detail section.
6. Make sure that the command button in the form is selected, and then click Properties on the View menu.
7. Click in the following property text boxes and enter the values given:

Name: cmdUpdatePhones

Caption: Update Phones
8. Click the OnClick property text box, click the Build button (Â…), and then click Code Builder to open the

Visual Basic Editor.
9. Type or paste the following lines of code in the cmdUpdatePhones_Click subprocedure:

Dim conDatabase As ADODB.Connection
Dim strSQL As String

Set conDatabase = CurrentProject.Connection

strSQL = "UPDATE tblCustomers SET Phone = 'None'"
conDatabase.Execute strSQL

MsgBox "All phones have been set to ""None""."

conDatabase.Close
Set conDatabase = Nothing

10. Close the Visual Basic Editor, close the property sheet, and then click Form View on the View menu.
11. Click the Update Phones button. You should see a message box that says all the phone numbers have been

set to "None." You can verify this by opening the tblCustomers table.
Although using SQL statements inline is great for action queries (that is, append, delete, and update), they are
most often used in select queries to build sets of records. Let's suppose that we want to loop through a results-
based set to accomplish what the UPDATE statement did. Following a similar procedure for the UPDATE
example, use the following code in the cmdSelectPhones_Click subprocedure:

Dim conDatabase As ADODB.Connection
Dim rstCustomers As ADODB.Recordset
Dim strSQL As String

Set conDatabase = CurrentProject.Connection
strSQL = "SELECT Phone FROM tblCustomers"

Set rstCustomers = New Recordset
rstCustomers.Open strSQL, conDatabase, _
 adOpenDynamic, adLockOptimistic

With rstCustomers
 Do While Not .EOF
 !Phone = "None"
 .Update
 .MoveNext
 Loop
End With

MsgBox "All phones have been set to ""None""."

rstCustomers.Close
conDatabase.Close

Set rstCustomers = Nothing

Pagina 12 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Techni...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

Set conDatabase = Nothing

In most cases, you will achieve better performance by using the UPDATE statement because it acts on the table
as a whole, treating it as a single set of records. However, there may be some situations where you simply must
loop through a set of records in order to achieve the results you need.

One Last Comment
Although it may be difficult to believe, this article has only scratched the surface of the SQL language as it
applies to Access. By now you should have a good basic understanding of SQL and how you can use it in your
Access 2000 applications. Try out your new skills by using SQL in any RecordSource or RowSource property
you can find, and use the resources listed in the next section to further your knowledge of SQL and Access.

Additional Resources
Resource Description
Intermediate Microsoft Jet SQL for Access 2000 This article builds on the fundamental concepts already

covered here, and gives a much more detailed picture
as to what can be accomplished with Microsoft Jet SQL
in Access.

Advanced Microsoft Jet SQL for Access 2000 Third in the series of SQL articles, "Advanced Microsoft
Jet SQL" builds on the concepts covered in the first two
articles, this time focusing on the SQL syntax that is
most often used in a multiuser environment.

Microsoft Jet SQL Reference Help This is the definitive source for the SQL language as it
applies to Access 2000. It can be found in the Contents
section of Microsoft Access 2000 Help.

Microsoft Access 2000 Help An irreplaceable source of Access 2000 programming
topics.

Microsoft Office 2000/Visual Basic Programmer's Guide This comprehensive book covers how to use VBA to
program Office 2000 applications.

Microsoft Developer Network,
http://msdn.microsoft.com/

This Web site always has the latest information for
developing solutions with Microsoft platforms and
languages.

MSDN Office Developer Center,
http://msdn.microsoft.com/office/default.asp

This Web site contains the latest information about
developing applications with Microsoft Office.

MSDN Training, Career, and Events Look to Microsoft's MSDN Training courses to provide
the soundest techniques for developing Access 2000
applications.

Print E-Mail Add to Favorites

How would you rate the quality of this content?
1 2 3 4 5 6 7 8 9

Poor Outstanding
Tell us why you rated the content this way. (optional)

Submit

Average rating:
6 out of 9

1 2 3 4 5 6 7 8 9
676 people have rated this page

Manage Your Profile | Legal | Contact Us | MSDN Flash Newsletter
© 2005 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

Pagina 13 di 13Fundamental Microsoft Jet SQL for Access 2000 (Microsoft Access 2000 Techni...

23/11/2005http://msdn.microsoft.com/library/en-us/dnacc2k/html/acfundsql.asp?frame=true

